This page is not available in your selected language. Your language preference will not be changed but the contents of this page will be shown in English.

To change your current location please select from one of Julius Baer’s locations below. Alternatively if your location is not listed please select international.

E-Services

Please select
Additional e-Services

*The location identified is an approximation based on your IP address and does not necessarily correspond to your citizenship or place of domicile.

Newsletter

Sign up for Insights newsletter

Newsletter

Sign up for Insights newsletter

Genomics watchlist: discover three out of nine promising areas

A genomics revolution is unfolding before our eyes. The intense research and development in the field in recent years has made it more possible for us to imagine a world that could address present and future health threats in ways that were unthinkable a decade ago. Which exciting developments are currently underway? Our Next Generation Research Analyst Dr. Damien Ng examines nine promising areas in his latest research focus. In this article, we take a close look at three of them.

Print
share-mobile

Share

Share

Liquid biopsies

In recent years, liquid biopsies – the analysis of biomarkers shed by tumours circulating in the bloodstream – have garnered considerable interest among medical professionals. This is primarily due to the promise that the technology can spark further medical advances, especially when it comes to cancer diagnosis, prognosis, and monitoring. Based simply on a blood specimen extracted from an individual, traces of the cancer cells or pieces of the tumour’s DNA can provide physicians with information about the types of treatment that are most likely to work for the individual.

The minimally invasive nature of a liquid biopsy, which typically requires between 5 to 10 millilitres of blood, means that it is more comfortable for the patients in terms of pain tolerance. Furthermore, the procedure is shorter in duration than the more invasive procedure of a surgical biopsy, which usually involves a surgeon making an incision in the skin to remove a tissue sample from a lump or mass for examination under a microscope.

Infectious disease diagnostics

Microbes that attack the body can cause diseases in humans. Also known as infectious agents or pathogens, these microscopic living things can range from bacteria and viruses to parasites and fungi. Since infectious diseases can be transmitted directly or indirectly from one person to another through contact with blood, body fluids, or aerosols (coughing and sneezing), healthcare professionals are increasingly turning to genetic testing techniques to detect the presence of the offending agents in our bodies.

As the concentration of their genetic material is often extremely low, many nucleic acid testing includes an additional step that amplifies the genetic material by making unlimited copies of it. This type of test is called the nucleic acid amplification test (NAAT). In particular, the polymerase chain reaction (PCR) variant of the NAAT has become an indispensable tool in modern molecular biology. Not only does this method allow scientists to take a very tiny genetic sample and have it magnified to a large enough amount to study it in greater detail, but the PCR technique is also more rapid and sensitive compared to the traditional methods of diagnosis, like culture or serology.

Gene editing

CRISPR/Cas9 (hereafter CRISPR), which stands for clustered regularly interspaced short palindromic repeats, is an innovative genetic engineering technology that allows scientists to alter DNA sequences and modify gene function. Held widely as a revolutionary technique in the field of genome editing, CRISPR could enable scientists to repair genetic defects and treat debilitating illnesses ranging from Huntington disease to sickle cell disease and genetic blindness. This compares with some of the more traditional variants of gene therapies, which use viruses to insert new genes into cells to treat diseases. As CRISPR employs targeted molecular tools to make changes directly in the DNA, its treatments largely circumvent the need to turn to the use of viruses, which have previously caused some safety problems.

Although recently developed programmable editing tools, such as zinc-finger nucleases and transcription activator-like effector nucleases, have significantly improved the capacity for precise genome modification, these techniques have limitations. CRISPR represents a significant improvement over these next generation genome-editing tools due to its precision, efficiency, and ease of use. This means that the CRISPR system allows for site-specific genomic targeting in virtually any organism.

Tying it all together: the investment view

In our opinion, long-term investors should maintain a positive stance on the genomics theme due to favourable political tailwinds, momentous demographic forces around the world, and the rise of chronic diseases associated with ageing. Notably, we like companies involved in gene testing and gene modification.

Would you like to know more about thematic investing and which megatrends should be reflected in your portfolio?

> Contact us

This article is a part of the ’Shifting Lifestyles’ series, in which we observe how ageing populations and extended longevity are altering global lifestyles. 

The future of genomics and medicine

The future of genomics and medicine

The world is witnessing the revolution of genomics unfolding right before its eyes. Although the science of human genetics and its application in medicine are not something new, never before has the importance of genomics been felt so acutely and urgently through the highly prolific, frantic global race (at warp speed) for a cure against Covid-19.

Not only has the unprecedented nature of the global health crisis been revealed by extensive government intervention at a global scale that has never been seen before, our lack of preparation for the pandemic has also led to dire public health consequences and economic hardships for many people worldwide.

Genomics is standing at the forefront of science, as it holds great promise to address both present and future health threats in ways that were unthinkable merely a decade ago. The path to success will not be a linear one, however. It will be fraught with moments of doubt, uncertainty, and failure. After all, scientific progress is only made possible due to the relentless determination and tenacity of the scientists and researchers who plan, experiment, and think out of the box despite countless setbacks and obstacles. Without the important contributions of scientists who made that first move and the development of cross-border collaborations among many of them, the world would look very different today. The fruits of their labour will thus mean that our vision of a more robust future health could be within grasp, especially in the areas of disease prevention, diagnosis, management, and a truly personalised medicine and care. We owe it to ourselves and to the next generation to deliver it.

Related Articles